Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Journal of Extreme Events ; 8(2), 2021.
Article in English | ProQuest Central | ID: covidwho-1551071

ABSTRACT

In May 2020, the New York City (NYC) Mayor’s Office of Climate Resiliency (MOCR) began convening bi-weekly discussions, called the Rapid Research and Assessment (RRA) Series, between City staff and external experts in science, policy, design, engineering, communications, and planning. The goal was to rapidly develop authoritative, actionable information to help integrate resiliency into the City’s COVID response efforts. The situation in NYC is not uncommon. Extreme events often require government officials, practitioners, and citizens to call upon multiple forms of scientific and technical assistance from rapid data collection to expert elicitation, each spanning more or less involved engagement. We compare the RRA to similar rapid assessment efforts and reflect on the nature of the RRA and similar efforts to exchange and co-produce knowledge. The RRA took up topics on social cohesion, risk communication, resilient and healthy buildings, and engagement, in many cases strengthening confidence in what was already known but also refining the existing knowledge in ways that can be helpful as the pandemic unfolds. Researchers also learned from each other ways to be supportive of the City of New York and MOCR in the future. The RRA network will continue to deepen, continue to co-produce actionable climate knowledge, and continue to value organizational sensemaking as a usable climate service, particularly in highly uncertain times. Given the complex, rare, and, in many cases, unfamiliar context of COVID-19, we argue that organizational sensemaking is a usable climate service.

2.
Environ Health Perspect ; 128(11): 115001, 2020 11.
Article in English | MEDLINE | ID: covidwho-1054874

ABSTRACT

BACKGROUND: Modeling suggests that climate change mitigation actions can have substantial human health benefits that accrue quickly and locally. Documenting the benefits can help drive more ambitious and health-protective climate change mitigation actions; however, documenting the adverse health effects can help to avoid them. Estimating the health effects of mitigation (HEM) actions can help policy makers prioritize investments based not only on mitigation potential but also on expected health benefits. To date, however, the wide range of incompatible approaches taken to developing and reporting HEM estimates has limited their comparability and usefulness to policymakers. OBJECTIVE: The objective of this effort was to generate guidance for modeling studies on scoping, estimating, and reporting population health effects from climate change mitigation actions. METHODS: An expert panel of HEM researchers was recruited to participate in developing guidance for conducting HEM studies. The primary literature and a synthesis of HEM studies were provided to the panel. Panel members then participated in a modified Delphi exercise to identify areas of consensus regarding HEM estimation. Finally, the panel met to review and discuss consensus findings, resolve remaining differences, and generate guidance regarding conducting HEM studies. RESULTS: The panel generated a checklist of recommendations regarding stakeholder engagement: HEM modeling, including model structure, scope and scale, demographics, time horizons, counterfactuals, health response functions, and metrics; parameterization and reporting; approaches to uncertainty and sensitivity analysis; accounting for policy uptake; and discounting. DISCUSSION: This checklist provides guidance for conducting and reporting HEM estimates to make them more comparable and useful for policymakers. Harmonization of HEM estimates has the potential to lead to advances in and improved synthesis of policy-relevant research that can inform evidence-based decision making and practice. https://doi.org/10.1289/EHP6745.


Subject(s)
Air Pollution , COVID-19 , Coronavirus , Severe Acute Respiratory Syndrome , Climate Change , Disease Outbreaks , Epidemiologic Studies , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL